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Section I

INTRODUCTION

The USA-STAGS code [1] computes the transient response of
a submerged structure that is subject to underwater shock ex-
citation. The structural behavior may be linear or nonlinear.
The success of this code in treating the complex phenomena in-
volved is largely due to the development of the Doubly Asymptotic
Approximations [2,31 that describe the fluid-structure interaction
in terms of variables at the "wet" surface of the structure only,
thus avoiding the modeling and computational burden produced
by surrounding the structure with fluid-volume elements. This
approach has opened the way to greater understanding of the
problem area through computer simulation. A restricted class of
problems exist, however, for which the possible effects of hull
cavitation on the structural response must be considered. A
related question concerns the treatment of internal fluids con-
tained within ballast tanks, free-flooded areas, etc. An exten-
sion of the present underwater-shock computational technology
to include fluid-volume elements is required to treat both of these
complications.

A highly efficient computational scheme for treating a cavitat-
ing acoustic fluid has been devised by Newton [4]. The scheme
involves the use of the displacement potential, which is a scalar
quantity, as the primary variable in the formulation of finite-
element matrix equations for the fluid volume. This choice has
significant advantages over a displacement vector formulation,
which triples the number of fluid-volume unknowns and does not
automatically enforce irrotationality of fluid motions. A second
feature of Newton's scheme is the use of an explicit time integra-
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tion method. These two concepts form the basis of the newly
constructed Cavitating Fluid Analyzer (CFA) that has been in-
terfaced with USA-STAGS.

The theory behind the implementation of CFA and its in-
teraction with both USA and STAGS is presented in Section II,
along with stability analyses of the staggered time-integration
procedure used in the coupled USA-STAGS-CFA system. Section
III contains a brief discussion of the software implementation and
usage of this system. Finally, Section IV presents computational
results for two simple cavitation problems for which solutions are
available, namely, the one-dimensional Bleich-Sandler flat-plate
problem [5], and a variant of a two-dimensional cylindrical-shell
problem studied by Newton [6]. The USA-STAGS-CFA results are
shown to be in excellent agreement with the previous solutions.

It should be emphasized that this report is not a users manual
for the USA-STAGS-CFA system. Such a manual will be issued
once the new software has undergone further evaluation in actual
three-dimensional problems and has been provided with a CFA
user interface that meets the production-level needs of the under-
water shock community.
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Section II

THEORY

§2.1 Problem Description

A structure is submerged in a fluid idealized as an infinite acous-
tic medium incapable of transmitting tensile stresses. A compres-
sive shock wave propagates through the fluid and impinges on
the structure. If the structure is sufficiently flexible and the am-
bient hydrostatic pressure sufficiently low, the scattered negative
pressure wave may induce cavitation in the subregion that was
traversed by the incident shock wave before reaching the struc-
ture. This phenomenon is known as hull cavitation.

Because of the nonlinear nature of cavitation, a boundary-
element treatment of the entire fluid domain as a "DAA mem-
brane" surrounding the structure is ruled out. (Boundary element
methods are restricted to homogeneous linear domains.) Instead,
a realistic computer analysis of this problem requires the con-
sideration of the three interacting fields illustrated in Figure 1:
structure S, cavitating fluid volume V, and DAA membrane D.

The DAA boundary should be placed as far away as neces-
sary to encompass the cavitating fluid subregion. Inasmuch as
the extent of the latter is generally unknown before the analysis
is performed, some iterations on the placement of the DAA boun-
dary may be necessary. For example, if an analysis shows cavita-
tion occurring at points on the DAA boundary, the latter should
be moved further away from the structure interface. Conversely,
if a preliminary analysis shows that wide external fluid regions
remain pressurized, the DAA boundary might be moved closer to
the structure to reduce the computational cost.
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The nature of the interaction among the three fields (S, V,
D) can be pictorially illustrated as follows.

displacements pressures

Submerged Fluid DAA
Structure Volume Boundary

pressures displacements

This diagram shows that the fluid volume basically functions
as a pressure transducer between the DAA boundary and the
submerged structure. By way of contrast, Lhe more conventional
two-field structure-DAA interaction can be diagrammed as

velocities

Submerged DAA
Structure Boundary

pressures

This section presents theoretical background material with
emphasis on the finite element discretization of the fluid-volume
subsystem and the treatment of the coupled problem with a stag-
gered time-integration procedure.
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Figure 1. Coupled-field idealization of cavitating fluid problem
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§2.2 Fluid-Volume Field Equations

This subsection is a compendium of well known continuous field
equations for linear and bilinear acoustic fluids. These equations
are collected here to introduce notation and to make this report
reasonably self-contained.

Small, Irrotational Motions of a Compressible Fluid. Let pH

and p be the hydrostatic pressure and fluid density, respectively,
in the acoustic fluid that occupies the volume V of Figure 1.
Compressive pressures are conventionally denoted as positive. Ma-
terial points in V are identified by the global-coordinate vector
2" = (X, Y, Z). If 7 = 7(l) is the body force field, then the
static equilibrium vector equation is

p - -(2.1)

Let I = Y(k) be the fluid-particle displacement field under
dynamic conditions. Then

= I - 1, (2.2)

is the fluid particle displacement relative to a reference hydro-
static displacement YH. The dynamic vector equation of motion
is

Pa= p+ f, (2.3)
where p is the total pressure.

For small irrotational fluid motions, the field is derivable
from the scalar displacement potential Tf defined by

= -Pa. (2.4)

The factor p is introduced in the potential definition for notational
convenience.
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= -(p PH). (2.5)

which can be spatially integrated to yield

---- !p _PHI (2.6)

For future use, define the "densified" relative condensation as

$ - -pV. (2.7)

From (2.4) and (2.7) it follows that

s = v 2 . (2.8)

Linear Fluid. The constitutive equation of a linear acoustic fluid,
valid for s < p, is

p_ pp l = c;s. (2.9)

Here, c is the reference sound speed, which is linked to the bulk
modulus K and density p by the relation c2 = K/p.

Bilinear Fluid. In real fluids, cavitation is a microscopically hetero-
genous phenomenon influenced by gas dilution concentrations. A
simple yet effective mathematical model for this phenomenon con-
sists of assuming that, the cavitating region is macroscopically
homogeneous and at zero total pressure. This leads to the notion
of a bilinear fluid, whose constitutive properties are adjusted so
that it cannot transmit negative total pressures. The constitutive
equation of the bilinear fluid is

) - H + - 15 if s > -pH/c 2

p = 0 otherwise. (2.10)



The equation of motion (2.6) becomes

_ p _PH if > -pH /c 2,

= -PH otherwise. (2.11)

Remark 1. Temporal differentiation of (2.4) furnishes the velocity potential
equation

= I- -ptl, (2.12)

where 0 - is the fluid-particle velocity. However, the velocity potential is
not a primary field variable in the present work. The use of IP as primary
variable has been found [4,TJ to produce temporal discontinuities that are
avoided by the displacement potential formulation.

Remark 2. Elimination of p and s from (2.6), (2.8) and (2.9) shows that, for
a linear fluid, I' satisfies the scalar wave equation

- c2 V 2 j, (2.13)

and, of course, so do p and s.
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§2.3 Fluid-Volume Discretization

Acoustic Finite Elements. The volume V occupied by the cavitat-
ing fluid is divided into three-dimensional finite element sub-
doinains interconnected at element node points. The basic ele-
ment used in this study is the eight-point isoparametric "brick",
which is a hexahedron whose geometry is uniquely defined by the
position of its eight corner points. Six-node "wedge" elements
may also be used for things like rounding corners, etc.

Following standard finite element techniques, the geometry of
the discretized fluid volume is expressed in the standard matrix
form

X = NtX, Y=NY, Z = Nt Z, (2.14)

where X, Y and Z are column vectors of nodal values of the

global coordinates It = (X,Y,Z), N is a column vector of
finite clement shape functions associated with these nodes, and
superscript t denotes transposition.

Matrix Equations. The displacement-potential Galerkin formula-
tion of R. E. Newton [4,7] is used to derive the finite element
matrix equations. The primary field variables of this formulation
are the displacement potential P and the condensation s. In ac-
cordance with the isoparametric finite element concept, these two
fields are interpolated with the geometry shape functions:

= N' *, s = Nt s, (2.15)

where *I and s are the column vectors of node values of iP and s,
respectively.
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The discrete counterpart of the strain-displacement equation
(2.8), i.e.

S - V2=f = 0, (2.16)

is the Galerkin equation

IvN(S- V 2 t)dV = 0. (2.17)

Application of the divergence theorem to (2.17) produces

f(Ns+ 
=VNVfldV N dB, (2.18)

where n denotes the outward normal to the boundary B of V.
Insertion of the finite element interpolation assumptions (2.15)
into the left-hand side of (2.18) yields the Galerkin matrix equa-
tion

Qs = -H*' + b. (2.19)

In this equation Q and H are symmetric square matrices given by

Q - N NdV, (2.20)

H = f(VN)(VN)t dV, (2.21)

while the column vector b is defined by

b =--/ NOn dB. (2.22)

The determination of the entries of Q and H is performed by stan-
dard numerical integration techniques for isoparametric elements,
using Gauss-Legendre quadrature rules. For the time-marching
calculations described in following sections, the entries of matrix

2-8



H need never be explicitly calculated; instead, the vector

r- =-H (2.23)

is formed directly in the numerical integration loop.
The boundary interaction vector b can be split into

b - bs + bd, (2.24)

where terms bS and bd come from the contributions of the struc-
ture and DAA boundary, respectively. The calculation of these
terms is discussed in §2.5 and §2.6.

Dynamic Equations. The space-discrete counterpart of the field
equation of motion (2.6) is

1 = p p- , (2.25)

where p and pH are column vectors of node values of p and pH

Eqs. (2.19) and (2.25) may be combined by eliminating p and
s to yield

'1 + c2Q- ' H ' - c2 Q' b. (2.26)

This is the finite element discretization of the wave equation (2.13)
with a forcing boundary term. (This term results from the use of
the divergence theorem.)

In the time integration scheme described in §2.4, the com-
bined equation (2.26) is not used. Instead, it is far more con-
venient to use the two equations (2.19) and (2.25) in tandem, as
the intermediate vector quantities s and p are of interest for test-
ing the cavitation condition (1.14) and for the determination of
the interface forces that act on the structure and DAA boundary.
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Capacitance Lumping. Matrix Q is the analog of the consistent
capacitance (mass) matrix of finite element thermal (mechanical)
models. For explicit time-marching calculations it is convenient
to replace Q by a "lumped capacitance" diagonal matrix Q to
avoid solving systems of linear equations. Thus (2.19) becomes

Qs = -HI* + b. (2.27)

Lumping is effected by assigning the row sums of Q to the diagonal
of Q.

Remark 1. Some differences with Newton's formulation as presented in Refs.
[4,7] should be noted. Newton uses a displacement potential W defined in
terms of total displacements, so that the s corresponding to (2.7) is the
absolute condensation. Furthermore, he selects the opposite sign in the
displacement potential definition; thus his Eqs. (2.6) and (2.8) are i' =pH p
and s = -V 2 W', respectively.

Remark 2. Comparing (2.26) and (2.13) it is plain that -Q-1 H is a dis-
-retization of the Laplacian operator V 2 . and so is the "lumped capacitance"
form H. A comparison of these discrete finite element operators with
conventional finite difference "molecules" is illuminating. At interior points
of a regular two-dimensional mesh of square cells, -Q-1 H is equivalent to
the conventional 5-point "Laplacian star" finite difference molecule. On the
other hand, the lumped form -Q -1H turns out to correspond to a 9-point
molecule obtained by averaging two standard 5-point molecules, one being
rotated by 45 . A similar but more complicated analogy holds for three
dimensions.
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§2.4 Time Integration

For numerical stability reasons discussed later in this and follow-
ing subsections, the introduction of artificial damping terms in the
fluid-volume equations of motion turns out to be highly beneficial.
TO) sini)lify matters, however, we start the presentation of fluid-
volume time integration techniques assuming that such terms are
absent.

Undamped Integration. Equation (2.25) is numerically integrated
in time with an explicit central difference scheme. Let (.),,
denote the computed value of (.) at the n-th time station t,.
Computations have proceeded until tn. If h is the time increment
tn+ - tn, the central difference scheme can be written

41n+1/2 -*n-1/2 + h (pn pY) (2.28)

Sn+l = *n + h 4fn+1/2. (2.29)

The advancing step is completed by the discrete strain-displace-
ment equation (2.19) and the constitutive equation (2.9):

2.27
stQS+, = -H n+I + bn+l, (2.30)

Pn pi = P + C2 BnHi. (2.31)

Inasmuch as Q is a diagonal matrix, the solution of the linear
system (2.30) for sn+ 1 is trivial.

Note that in this process 4F, s and p are computed at full
stations, whereas * is computed at half stations:

• qn-i *ln *n+ I
o o

?I - 1/2 *n+1/2

Pn- i Pn Pn+1

2-11



This has important implications in the starting procedure
described in §2.7.

If the forcing vector b does not depend on left-hand side
variables, the numerical stability of the central difference scheme
(2.26)-(2.31) is well known. It can be expressed as the Courant-
Friedrichs-Levy (CFL) condition

h < hc = L/c, (2.32)

where L is the smallest cross dimension of a fluid-volume finite
element; hc is called the Courant timestep. The CFL condition
(2.32) will be derived later in this section as a particular case of
the damped system integration.

The accuracy properties of the central difference operator are
also well known. It does not introduce numerical damping. On
a regular grid of equal-side elements, integrating with h = hc
furnishes exact, nodal results for the propagation of plane-waves of
rectangular profile (e.g. step-waves) along gridlines. For all other
cases (h : h0 , irregular grids, or general waveforms), numerical
disl)ersion occurs and the solution is inexact.

Artificial Damping. Newton's studies [4,71 have indicated that
occurrence of cavitation can induce growing spurious pressure
oscillations. These oscillations eventually cause "fragmentation"
of the cavitation region in the sense that small pressurized islands
appear in the cavitation region while small zero-pressure bubbles
appear in the pressurized region. The phenomenon has been
termed frothing.

The most, effective cure to frothing is numerical damping that
increases with frequency. This can be achieved by augmenting
(2.25) with an artificial damping term proportional to §:

= p_ pH + 01hc 2 , (2.33)

in which is a dimensionless damping coefficient that varies from
0 to 1. The value of I is estimated by a backward difference
formula.
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For a pressurized fluid (2.33) would reduce to the slightly
simpler form

_ = p - p" + #lh 1,(2.34)

since I = 1/c 2. But the expression (2.33) is more general, as it
can be used for a cavitation region in which P is unrelated to .

The modified solution-advancing process, including the test
for cavitation, is as follows.

in --(sn - sn_)/h, (2.35)

fn+1/2 = *I'n-1/2 + h (p - pH - fhc2 I), (2.36)

,+1 -- 4n + h fn+1/2, (2.37)

Q Sn+l = -H *n+i + bn+i, (2.38)

Pn+i = max(p H d- C2 Sn+i,0). (2.39)

Stability of Damped Integration. The following study investigates how the
stable timestep depends on the artificial damping coefficient, which is ob-
viously a question of practical importance. The effect of structure- and DkA-
coupling terms on numerical stability is ignored here. These two effects are
examined in §2.5 and §2.6, respectively.

The stability analysis of the advancing process (2.35)-(2.39) is under-
taken with a Fourier (normal mode) method, which involves fairly conven-
tional steps. First, the nonhomogeneous vector terms: hydrostatic pressure
p" and boundary force b are discarded (the latter because of the interaction
neglect as noted previously). Next, the state variables (*, s and p ) are
expanded into normal-mode motions associated with the eigenproblem

Qv = X HV. (2.40)

Inasmuch as both Q and H are symmetric and nonnegative definite (Q is in
fact positive definite), all eigenvalues X of (2.40) are real and positive.
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The advancing step (2.35)-(2.39) is rewritten for a specific normal mode

of eigenfrequency ):

"+1/2 = 'k-1/ 2 + h ip" + P c2 (sn - Sn-1)], (2.41)

0"-- = Otn + hC$+1/ 2 , (2.42)

S " (2.43)

pn+l = Y'c2 snn+l ---- '/XC20n+I .  (2.44)

In these equations, 0, s and p denote amplitudes of *, s and p, respectively,

and y is a switch variable that takes the value 1 for pressurized fluid (p > 0)

and 0 for cavitating fluid (p = 0). [Implicit in the use of y is the assumption

that a normal mode pertains wholly to either condition; this can be only

justified a posteriori by showing that only one condition is critical.]

Elimination of the three intermediate variables , s and p yields the

difference equation

On+, - 20n + - - -( + #)'On - -11 (2.45)

with
- h 2c2 X, (2.46)

whlich i at du111i~uuiV paramtueLe.

The associated characteristic polynomial in the complex amplification
variable z (the discrete Laplace transform image of ,p) is

C(z) = z 2 - [2 - ('- + f)]z + 1 - f. (2.47)

The corresponding Routh polynomial, obtained through the involutory

mapping z = (y + 1)/(y - 1), is

C(qy + 6) y 2 + 2# y + 4 - C(, + 2P), (2.48)

from which it is easy to deduce the stability conditions

h2 and P > 0. (2.49)

This expression shows that the smallest stable timestep is associated

with the largest eigenvalue X of (2.40). It can be shown that for trilinear shape

functions X is bounded above by 4/L 2 , where L is the smallest finite element

mesh dimension. (This eigenvalue is associated with "hourglass" geometric
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distortions.) Inserting this bound in (1.49) yields the desired formula

hc
h < hmaz (2.50)Vr+ 2P

where hc is the Courant timestep defined by (2.32).

Setting 'y = 0 increases the stability limit if P _ 0. Thus the occurrence
of cavitation does not have a detrimental effect on stability. From now on
we can conservatively set yt = 1.

If P - 0, the stability limit (2.32) of the undamped central difference
scheme (2.28)-(2.31) results. But if ft > 0, the stability limit is reduced by

the factor 1/V/I -+ 2. This factor reaches I/V"- = 0.577 for f - 1, which
is the maximum suggested damping.

There is in fact a slightly smaller recommended maximum timestep.
This is the transition stepsize ht,. at which the roots of the quadratic charac-
teristic equation C(z) = 0 pass from imaginary to real. Imposing the double
root condition readily yields

_hc

htr - (2.51)+

This is smaller than h,,ax, but differs by at most 15% from it if P 1, as
illustrated by the following table.

f hmax/hc htr/hc
0.000 1.000 1.000
0.250 0.816 0.800
0.500 0.707 0.667
0.750 0.632 0.571
1.000 0.57" 0.500

For plots of h/hc vs. p, see Figures 2 through 5 in §2.5.

2-15



§2.5 Structure-Fluid Interaction

Action ol Fluid-lolume on Structure. The differential equation
of motion for the dynamic response of a structure spatially dis-
cretized by the finite element method can be expressed in the
form

Ms + C s + Ks - fs, (2.52)

where x' is the column vector of nodal structure displacements,
M,, C, and K, are the structural mass, damping and stiffness
matrices, respectively, and f, is the external nodal force vector.
For acoustic-wave excitation of a submerged structure through
the fluid-volume mesh, f is given by

S G, -- Ans p, (2.53)

where p is the column vector of total pressures at the nodes of the
fluid-volume mesh, as in (2.25), A, is a diagonal matrix of con-
Iri tinq -oirfac, ironq s.nrro indina fluid-volume nodes in contact

with the structure, and G, is the transformation matrix that re-
lates structure and fluid nodal surface forces. If the structure and
fluid-volume nodes are in one-to-one correspondence, G, reduces
to the identity matrix for all wet-surface structure nodes, and is
zero otherwise.

Action of Structure on Fluid-Volume. The effect of the structural
re-ponse on the fluid volume field resides in the boundary inter-
action term b implicitly defined by (2.23) and (2.24):

b =J N dB, (2.54)

where B, is the wet structure (contact) surface. To evaluate b6 ,
replace

-- '-; py 7 (2.55)
On
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and
X8 = Nt xs. (2.56)

in (2.54). Here w is the structural displacement normal to the
structure's wet surface; A is the wet surface normal vector con-
sidered as positive going into the fluid, and N, is an array of
normal-displacement structural shape functions. The result can
be expressed as

V = p L, x' ,  (2.57)

where the matrix L, is given by

L NNt F sdB, (2.58)

in which F, is a diagonal matrix of normal direction cosines.
In practice, the entries of L, need not be explicitly calculated

and stored. Instead, the whole process of going from vector xs
to vector b can be conveniently packaged within a numerical
integration framework. The effective result of the numerical in-
tegration process can be presented in the "lumped area" form

bS=pAGtxS, (2.59)

where A, and G, are the same as in Equation (2.53).

Staggered Integration. The semi-discrete equations of motion of
the two interacting fields: submerged structure and fluid volume,
are numerically integrated with a staggered solution procedure in
which only two vectors: nodal pressures p and structure displace-
ments x1, are passed back and forth between the structure and
fluid-volume software modules.

The structural equations of motion (2.52) are treated by an
implicit time integration formula, which yields a (generally non-
linear) algebraic system that must be solved at each step:

E, x, =h + fn + 2f , (2.60)
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where
Es = Me + 6CS + 62 Ks, (2.61)

6 is an integrator-dependent generalized stepsize, hS is a term that
embodies the effect of previous structural solutions, and fN is a
nonlinear pseudo-force term.

Combining the previous equations with the artificially damped
central-difference advancing step (2.35)-(2.39), the following time
marching scheme results:

E, xs - hn + fn - 62G, As p, (2.62)
bz -- pA Gt x, (2.63)

n =-(sn - sn-j)h, (2.64)

*f,+1/2 = Ifn-1/2 - h (pn - p H + fhc2 In), (2.65)

*n+, -t *n + h 'n+I/2, (2.66)
Q S=+, -H n+ + b'+, + b (2.67)

Pn+i - max (pH +- c2 sn+ 1,O). (2.68)

The only undefined term in these equations is now b, which
comes from the DAA boundary interaction. This term is dealt
with in §2.6.

The simplest staggered solution procedure for the preceding
equations is obtained if one identifies b +1 with bl, and similarly
for the solution-dependent portion of bd. The net effect of this
"last solution" staggering is that the structure "lags" one step
behind the fluid volume.

An obvious refinement to the previous scheme is the use of
predictor xP for x9  in (2.63) instead of simply inserting the

last solution x For example,
be= p AG'xP = pA, W (xe + his). (2.69)bn sA Gtn nG n

Predictors may be used not only to improve accuracy, but also
stability of specific integration formulas, as shown in the following
study.
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Stability of Staggered Integration. The stability analysis presented here fol-
lows Fourier techniques similar to those used in §2.4. Let z be the amplitude
of a structural displacement mode, and let m, a and f be the corresponding
generalized mass, contact area, and pressure force, respectively. The struc-
tural damping can be neglected from the outset. The structure stiffness
can also be ignored, as a deeper analysis (not reported here) shows. Stiffness
nonlinearities can be therefore ignored. Thus only mass and contact area
govern stability.

The modal structural equations will be integrated by the general one-
step implicit method:

Xn Xn-1 + hI['pn + (0 - ,o) n-I], (2.70)

=k = -1 + h[Vi + (1- W)-* ]. (2.71)

This integrator specializes to Backward Euler for W - 1 and to the
trapezoidal rule for V = 1/2. The generalized stepsize is 6 - oh. For zero
damping and stiffness, the implicit equation (2.60) reduces to

Mx" = m(n-1 + hin-,)-+ h2 [' 2 fn - '-o(1- )fn-l]• (2.72)

The assumed predictor for the interaction term is

X+= x + ahin, (2.73)

where a is a free parameter.
As for the fluid-volume modal equations, (2.41) through (2.44) apply with

only the following changes: y is set to one (pressurized fluid, as a cavitating
fluid mode maintains zero pressure and does not interact), and the structure
boundary coupling term bs is added to (2.43). This term is divided by q,
which is the generalized capacitance associated with the fluid-volume mode
under consideration. Here is the complete set of difference equations:

mxn -' m(x., 1 -+ hin- 1) - ah[ppn -, p(1 - W)pn- ], (2.74)

nM = pa(zn + ahi,,), (2.75)

.+ = 12 - 1 / 2 + h[pn + #C2 (. - sn-)], (2.76)

On+i = On + h n+ 1 / , (2.77)

sn+= -X n+l + bs/q, (2.78)

Pn+i - C2 sn+i. (2.79)
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Elimination of the intermediate fluid variables , s and p furnishes two

coupled difference equations:

1[2 - C(1 + P)1'o + (1 - P) ._ -

(pah2c'/q)[(1 + )Z- -- -if.-2 + a(l + 6)hl,- 1 - aph- 2 ], (2.80)

-(1 P - W 2 )z,- 1 + Vo(1 - V)4Z.-2 - (I - a1)hi.-I

+V1- V)tAh'h!. C a/m[Vp2 0P + V(1 - V)tP,-j], (2.81)

where C is given by (2.46), and

pa 2 C2 hpa 2 2(2.82)

mq

is a dimensionless parameter that measures the strength of fluid-structure
modal coupling.

Direct elimination of the velocity terms in the preceding equations is
messy. It is more convenient to pass to the transform space z first, and then
eliminate them through the operator relation

hik Xk, k -n,n - 1,... (2.83)

nomial can be expressed as

C(z) = Cf f(z) Cg,(z) - JA Cf z) C$, (z), (2.84)

where
C"(z) = Z" + [-2 + (V2 + C)Asz

2

+{ (I + [2(1 -w) +a(l - 2)/} +z + (1 - v)(1 - i- a)w, (2.85)

Cf f(Z) = {z2 - [2- (1 + P)z 1I- 1-" } (2.86)

Cf p(z) = (V + t)(1-+6)z 2+[( l+ -(W+ a)(1+26)]z--f(1- -a), (2.87)

CSf(z) = (Vz + I -V ). (2.88)

Observe that Cf f(z) and C,,(z) with j = 0 are the characteristic poly-
nomials for the uncoupled fluid-volume and structure, respectively, while
Cf,(z) and Cf(z) account for the cross-coupling. Plainly the stability region
of C(z) cannot extent beyond that of the uncoupled components. Since C,,(z)
is absolutely stable (A-stable) with the choice 1/2 < V < 1, the stability
region of (2.84) must lie inside that of Cf f(z), which is in fact given by (2.50).

A long but. straightforward analysis shows that the quintic polynomial
"(z) has a double root at z = 1. Removing the factor (z- I)2 reduces C(z)
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to a cubic polynomial:

C(Z) = Z C(Z) - C C(Z), (2.89)

where C is given by (2.46), and

Cf(z) = z 2  2- (I -+ )]z +-I - , (2.90)

Cm(z) + 0o(±o ) Z 2 + 2(1 -1 o) + a(1 - 2W) z + (I - W)(I - V - a)

= (pZ+ I- )i(W+ aZ+1 -V-a)J, (2.91)

[Note that C!(z) is precisely (2.47).] The stability of C(z) was studied with a
computer program. Some results of the study are shown in Figures 2 through
5. In these figures the stability region is plotted in the hp plane over the
"window"

0 < h/he < 1, 0 < 1 <_ 1, (2.92)

where hc is the critical (Courant) timestep (2.32) for an uncoupled and un-
damped (P = 0) fluid-volume mesh. The other three free parameters are W,
a and P, which characterize the integration formula (2.70)-(2.71), the inter-
action term predictor (2.75), and the modal coupling strength, respectively.
The parameter C is iml)licitly defined by h/hc, since C = 4(h/hc)2 from
(2.19) for 6 = 0 and y 1.

Figure 2 show stability regions for the trapezoidal rule (W = 1/2) when
a 0 . i.e. the last displacement solution is used in the interaction term b.
,ts i (2.b3) . Tiie ,ii:ht fh. .' ,,v., it Figure 2 l'r : ii to fixt.d valuuN of

pa 2 c2h (9
., (2.93])

mq

which is simply (2.82) evaluated at the Courant timestep. This is the critical
physical parameter as regards stability of the staggered time-integration
procedure. The values of 14c for the eight frames are listed in the figure
caption. Stable regions are dark shaded. The stable region for A.c = 0
corresponds to the no-interaction case, whose equation is (2.50). It can be
seen that as Pc increases, the fluid damping coefficient P can have a dramatic
effect on stability. For example, if Psc = 1, the largest stable h is virtually
zero if 6 = 0, but surges to about 0.81hc if P = 0.25. This effect should
be contrasted to the uncoupled case studied in §2.4. in which increasing 6
always reduces the stable stepsize. But even with damping help in the range
0 < f < 1. no stable stepsize in the window (2.91) essentially survives for
Pc> 5.

Figure 3 also pertains to the trapezoidal rule, but now a is 1, which
effectively amounts to using the predictor (2.69). It can be seen that use of
this predictor substantially extends the stability region for large P c. The
effect of the damping coefficient 6 is not so dramatic as in the previous case,
but it is still pronounced for high /c values.
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"Overpredicting" with a > I has even more beneficial effects on stability,
as evidenced by Figure 4, which corresponds to a - 2. But accuracy suffers,
so using a - 1 is recommended.

Finally, Figure 5 shows results for the Backward Euler method (V - 1).
This integrator introduces high numerical damping in the structure, whereas
the trapezoidal rule introduces none. The stability regions for large 14c are
substantially enlarged, and are now fairly insensitive to both 6 and a (effect
of the latter is not shown here.)

Mesh Sizing Guidelines. The fact that uc is the critical stability parameter
for fluid-structure coupling may be used to derive some dimensioning guide-
lines for the fluid-volume mesh.

It is assumed that the wet-surface structure is a shell, the discretization
of which is known a priori. Now consider the interaction between two ad-
jacent physical elements: (1) a square plate dimensioned L X L, with thick-
ness G, and density p,, and (2) a rectangular fluid-volume brick dimensioned
L X L X D, where D < L is the dimension normal to the plate. The contact
area is L X L. Replacing

h ."- 2 ,.2 2L22,2.4

h , = L 4, m = pL 2t1  q = L2 D12, (2.94)

into (2.93) yields
- 2pD (2.95)

Ps *6

4 t,

This can be used for an order-of-magnitude (generally conservative) estimate
of 1AC for high-frequency, localized "mesh modes". The estimate helps in
sizing the first layer of fluid-volume elements adjacent to the structure. The
mesh can then be "radially" continued into the fluid as far as necessary.

For example, suppose that ts = 2 inches, and that it is desired to keep
lAc < 5 from stability considerations. Then D should not exceed 40 inches.

This simple rule has been used to size the fluid-volume meshes for the
example problems presented in Section IV, so that IAc does not exceed 5.
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Figure 2. Stability of (2.84) for trapezoidal rule (to =0.5)

and last-solution predictor a = 0. Each frame covers the
"window" 0 < h/hC :5 1 horizontally and 0 < P <5 1
vertically. Stable regions are dark shaded. Startingfrom the
upper left corner, the eight frames correspond to the following
values of uhc: 0, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0.
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L U

Figure 3. Stability of (2.84) for trapezoidal rule (Vo 0.5) and
full-step predictor a = 1. Each frame covers the "window"
o < h/tiC : 1 horizontally and 0 < P 5 1 vertically. Stable
regions are dark shaded. Starting from the upper left corner,
the eight frames correspond to the following values of jc: 0,
0.1, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0.
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Figure 4. Stability of (2.84) for trapezoidal rule (Vo 0.5)
and "overextrapolated" predictor a = 2. Each frame covers
the "window" 0 < h/'c :5 1 horizontally and 0 < P :5 1
vertically. Stable regions are dark shaded. Starting from the
upper left corner, the eight frames correspond to the following
values of Ahc: 0, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0.
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Figure 5. Stability of (2.84) for Backward Euler (W 1
and last-solution predictor a - 0. Each f rame covers the
window" U <, A/c: 1 horizontally and 0 -S P~ S I

vertically. Stable regions are dark shaded. Startingfrom the
upper left corner, the eight frames correspond to the following
values of pc: 0, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0.
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§2.6 Fluid-DAA Interaction

Role of DA.A Boundary. The Doubly Asymptotic Approximation
(DAA) boundary truncates the fluid-volume mesh to finite extent.
In its discrete form, it consists of boundary elements in contact
with faces of fluid-volume brick elements. This computational
field should ideally operate as a transparent entry boundary for
incoming (incident) waves, and as a perfectly radiating boundary
for outgoing waves. Because of the nature of the DAA, these con-
ditions are asymptotically satisfied in the limit of high-frequency
and low-frequency motions, and approximately otherwise.

The DAA boundary element mesh is usually constructed so
that, its nodes coincide with fluid-volume nodes. The net result
is that DAA elements lie on brick faces. But all DAA computa-
tional vectors are expressed not, in terms of nodal point values,
but rather of values at control points, which are located at the
centroid of each DAA element. So it, sometimes becomes neces-
sary to distinguish quantities such as displacement and pressure
vectors, area matrices, etc., which can be referred to either set of
points.

In this and following sections, letters f and d applied as
subscripts or supercripts to a matrix or vector symbol are used to
indicate that it pertains to DAA control points and to fluid-volume
nodes located on the DAA boundary, respectively; for example,
total-pressure vectors pf and pd. If neither appears, d is assumed.

Boundary Interaction Terms. The DAA boundary acts on the fluid
volume through the forcing term bd of (2.24). Arguments similar
to those used in §2.5 can be offered to derive a formal matrix
expression that, relates bd to the vector xf of global (X,Y,Z)
displacements at the DAA control points:

bd - pAdGdfTfjx f  (2.97)

Here Ad is a diagonal matrix of contributing areas that surround
fluid-volume nodes, Gdf is a transformation matrix from DAA
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control points to fluid-volume nodes, and Tf is a diagonal matrix
of direction cosines of the boundary normal (positive going into
the fluid) evaluated at the DAA control points. As in the case
of the structure interaction, entries of Ad and Gdf need never be
explicitly computed, for the whole vector transformation process
is elegantly hidden by one-point Gauss isoparametric integration.

The DAA displacement vector xf may be decomposed into
three components due to the free-field incident wave, scattered
wave, and hydrostatic pressure:

Xf - X .. I+ xfS + Xff. (2.98)

The hydrostatic displacement (but not the pressure) may be
set to zero ab initio, as it, cancels out in the relative displacement,
formulation used here. The other two components are studied in
the following subsections.

Incident Wave. We consider incident spherical and plane waves.
An incident, snherical waveform is comDletelv defined bv Livine
its origin (charge location) and the pressure profile

7)(t- t0;R) (2.99)

recorded at a reference location whose distance to the wave origin
is R. As the wave clock can be adjusted through an arbitrary time
shift to, the reference location may be conveniently specified as
the fluid-volume node "touched" by the wavefront at the reference
time t = 0; for this node R = R0 . The free-field incident pressure
can then be readily calculated at. any fluid point for all times
-Ro/c < t < +oc.

The free-field fluid-particle displacement Y' at an arbitrary
point, joined to the wave origin through the ,iit direction vector
P- may be determined from the relation

1*
)= ( )+ - (2.100)
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where each superscript asterisk denotes temporal integration from
t = -RoIc through t. This formula can be specialized to DAA
control points to provide the matrix expression

Tfx fl - 1Ff VI+ - 1 R-'f V f', (2.101)
PC p

where R is a diagonal matrix containing distances from the wave
origin to DAA control points, and Ff is a diagonal matrix of the
cosines of the angles between the local propagation direction 1
and the outward unit normal vectors at the DAA control points.

For an incident, plane-wave, R '-+ oo, and the second term on
the right of (2.101) drops out.

Scattered Waves. Displacements caused by scattered waves are
calculated from the simplest Doubly Asymptotic Approximation,
which reads

Mf OfS + pcAf pfS = pcMf fifs . (2.102)

In this equation, pfS and ufs are column vectors of scattered-
wave pressures and normal fluid-particle velocities, respectively,
at DAA control points, Mf is the (fully populated) mass matrix
for irrotational incompressible motions of the fluid external to the
)AA, and Af is a diagonal matrix of boundary element areas.

To get xIS , integrate (2.102) twice in time, and solve for the
scattere( normal displacements that, appear on the right-hand
side:

Tf xfS - V l fS + MlAfl/fS' (2.103)
PC

where constants of integration for V S and Wp S are determined
from the initial conditions discussed in §2.7.

Remark. Do not confuse Af with the Ad that appears in (2.97). Both are
diagonal area matrices but the first one pertains to DAA control points and
the second one to fluid-volume nodes at the DAA boundary.
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Mass/Damping Split. The two components of x f S that appear
in (2.103) have different physical significance and deserve to be
identified separately:

1

x f - T- V SY (2.104)
PC

xfM _ Tfl M7'Af V*fS. (2.105)

Here superscripts D and M stand for damping and mass, respec-
tively, in accordance with the following interpretation.

The displacement vector xfD corresponds to the DAA operat-
ing as a "pc boundary", radiating high-frequency energy out into
the external fluid. The displacement vector xfM corresponds
to the DAA acting as an "added-mass boundary", accounting
rigorously for low-frequency "sloshing" of the external fluid. As
discussed later, these different, interpretations translate into dif-
ferent, numerical treatments in the implementation of the time
integration procedure.

Insertion of the various displacement terms into (2.97) -

with the hydrostatic component, excluded - splits the interaction
vector into three components:

bd - b' + bD + bM (2.106)

where b = AdGdfrf(-O f [ 1= R- 1 W'*/), (2.107)
C

bD = 1AdGdf 6fS, (2.108)

bM = pAdGdfMflAf p f s . (2.109)
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Scattered Pressure Calculations. The fluid volume acts on DAA
boundary elements through the total-pressure vector p, which is
obtained in the course of the time integration solution process.
Total pressures may be interpolated from fluid-volume nodes to
DAA control )Oints through the transformation matrix Gfd -

p = Gfdp. (2.110)

The scattered pressure component now follows by substracting off
the incident and hydrostatic components:

p, fS= p f _fI pf i. (2.111)

This scattered pressure data can be time-integrated numeri-
cally to generate .'- and p*fs. For example, using the trape-
zoidal rule:

1+ ff (p +fS pfS ), (2.112)

A - n 2 f (2.113)

V inally, these pressure-integral values can be inserted into
(2.108) and (2.109) to close the interaction loop.

Pressure Correction. Computational experiments with a fully
staggered solution procedure for the DAA interaction have shown
that undesirable pressure oscillations develop near the DAA boun-
dary. These oscillations are caused by the time lag in the treat-
rne:J of the "pr-boundary" coupling term (2.104). This lag in-
terferes with the energy-radiat ion process for outgoing scattered
waves. The spurious pressure oscillations eventually reflect back
to the structure and distort its response.

The problem has been solved by using a simultaneous pres-
sure solution for the pr-boundary term, while the "added mass"
term (2.105) is treated by staggered-solution techniques. The
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whole business can be transacted at the node level. Thus, consider
an individual fluid-volume node located at the DAA boundary.
Rewrite the interaction term (2.108) as

bD = (ad/c)PS, (2.114)

where bD, ad and hs denote entries of vectors bD, diag(Ad) and
Gd f fs, respectively, pertaining to the node under consideration.
Next, time-discretize (2.114) through the trapezoidal rule (2.112):

=D (adIC ) S + (h/2)(ps + ps
P n+)1. (2.115)

Now use -- H to get
Now u-p,+ - Pn+I Pn+1

= D (ad/c) [ S +(h/2)(pS - p Hn+ Pn (h2(n -Pnl -Pn+i + Pn+l)]. (2.116)

According to the problem-modelling assumptions stated in
§2.1, cavitation should not occur at the DAA boundary. Hence
the nodal pressure calculation, given by (2.67)-(2.68), becomes

qli., " 2 r + b l
_P~ - .Pbn+ 1 +l bn )

ad[*n + -(Psn - Pn+ _ Pn+i + Pn+i)] (2.117)

where r, q/. b and bM are entries of vectors r = -HI', diag(Q), b1

and b At, respectively, for the node under consideration. The next
total-pressure value Prt+i appears on both sides of this equation.
For simultaneous solution, the unknown term is moved to the left,
giving

qPn+i = q l + K )Pn+i = g, (2.118)
where

1w = -chad, 
(2.119)24

and g embodies all "leftover" right-hand side components. The

net effect of all this is that diagonal entries of Q pertaining to
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fluid-volume nodes on the DAA boundary must be multiplied by
a correction factor I + c.

Remark 1. The correction factor (1 + ic) is stepsize dependent, and tends to
one as h i' 0. It is fairly easy to show that . < I if h < hc, and takes the
value I on a regular grid if h equals the Courant stepsize hc.

Remark 2. xcq is half of the fluid volume swept by an area ad over the distance
ch travelled by a sound wave over the time increment h.

Remark 3. Since the pressure correction is node-level, the basic philosophy
of the staggered solution procedure, which calls for only vector transfer
information, is not violated. Had the simultaneous solution procedure been
extended to include the fluid-mass interaction vector bM, the fluid volume
analyzer would need to know about the full matrix Mf.

Remark 4. In the terminology of coupled-system partitioned analysis, the
process by which selected field quantities are manipulated into the left-hand
side of the equations of another field is called augmentation. This technique
is primarily used to improve numerical stability characteristics [8].

Staged DAA Analysis. Introduction of the pressure correction
mechanism effectively splits the analysis of the DAA field into
two stages. In the first, stage, the DAA displacement vector

Xf XP fD + f MP

?I+ -- +f - 1 x+1 (2.120)

is evaluated and supplied to the fluid volume analyzer. In (2.120),
xf,,f is a predictor for x 1 . This term is generated by ex-generatnd b
tra)olating the (louble integral of scattered pressure, for example

*V*fSP = Sf-hpfs (2.121)

which is then inserted in (2.109). The primary advantage of
predicting bf 1 , rather than using the previous value, is to im-
prove numerical stability characteristics, as shown later in this
section.

The second stage begins on exit from the fluid-volume ana-
lvzer, which returns the total pressure vector p . Now the
scat tered pressure-integral terms can be corrected using Equations
(2.110) to (2.113).
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For the implementation of this staged process it is more
convenient to use an incremental formulation based upon the total
pressure rather than the scattered pressure, as described next.

Incremental Formulation. Although the value of xI accumulated
since t - 0 given in (2.120) must be supplied to the fluid-volume
analyzer, in practice it is convenient to handle the DAA computa-
tions incrementally, since some terms are known precisely while
others must be estimated and then subsequently corrected.

The known terms involve the incident and hydrostatic pres-
sure. Some of them arise because of the DAA formulation, which
is based on the scattered pressure, and the need to work with
total pressure for the implicit treatment, of the pc boundary term.
They are:

- - I', (2.122)

A- (h/2)(ifH+1 + K' ), (2.123)
AJ f  - hp H, (2.124)

-fH _ . H - 4  
f H, (2.125)

h n (2.126),A* * f H h /(1 +4 6f H(2126

Hence

T X Axk - I (Af _ ±A fH)- M-'Af(Ap -± +*,fH)

known PC fV 1

+ -rf AV + 1rf R-1A . (2.127)
PC P

The unknown terms that, must be estimated involve integrals of
the total pressure as

A = hpf, (2.128)

A*pf hbf, (2.129)
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Tf Ax(Oi,at(d -_1 +Mf'Af A' p*- (2.130)PC

The predicted value of xf1 , that is supplied to the fluid-volume

analyzer is then

x, - Xf + AX{nown + AXfestimated •  (2.131)

On return from the fluid-volume analysis, displacements and pres-
sures are corrected:

if -- h/9)(pf+ -- Ps), (2.132)
f**

p71+ - n + AP (2.133)

Ayo = (h/2)(6f+ + , (2.134)

1
Tf Axcorrectfd + ± M Af A (2.135)

PC

+ = ," + AXkno,, + Axorrected, (2.136)

Notice that in this formulation there is no need to keep track
of the accumulated double integral of pressure W.

Stability of Staggered Integration. The following stability analysis only in-
vestigates the effect of staggering the fluid-mass coupling term bM. The
radiation-damping term bD has no effect on stability, for it is treated im-
plicitly. Incident and hydrostatic components are dropped and scattered
pressure becomes pressure. Cavitation is ignored. Absolute, rather than in-
cremental, quantities are used. Under these assumptions, the modal equations
for lie advancing sltep read:

= -1/2 + h1(1 + P)P" - PPn-IJ] (2.137)

on+,= n + hpn+1 2, (2.138)

V P - eI + ahA,, (2.139)

-P pde 12.140)

_X1= -X.+1 + b.M/q, (2.141)
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Pn+l = c2 s"+1, (2.142)

=+ = + (h/2) (pn +-pn+ ), (2.143)

*Pen1 - *en + (h/2) (, + + ). (2.144)

In these equations, 0, s and p are amplitudes of I,, s and p, respectively, for a
fluid-volume normal motion of eigenvalue X as in §2.5; ad and q are general-
ized values of Ad and Q, respectively, the latter embodying appropriate pres-
sure correction factors (2.1 19); a is a pressure-integral predictor coefficient;
and are the roots of the "fluid boundary mode" symmetric eigenproblem

eMf W = Af w, (2.145)

w being the boundary mode excited by the modal volume pressure.
Elimination of the intermediate variables i and s yields two coupled

difference equations:

'kn+i -2tP, + On-, = -=h 2 [(1 +)Pn Pn-i]. (2.146)

pn+ --4vh (p* + chtn) = -Xc 2 ¢+ 1 , (2.147)

in which
pc ad h

V= (2.148)
,4q

is a dimensionless modal-couDling coefficient that Dlavs a r6le analogous to
that of u in §2.5. (The factor 4 is introduced for convenience in subsequent
manipulations.) Transform these difference equations to the z plane, and
eliminate the pressure-integral terms through the operator relations

h z + I h 2 (zi) 2-pn (2.149)n -2 z - 1 -- z\- I . 219

The resulting cubic characteristic polynomial is

C(z) - zCf(Z) -p VC'Cm(Z), (2.150)

where is given by (2.46),

C (z) -=- z2  --(2 -- ( -+- )lz -+- I - , (2.151)

Gn (z) -- (z + 1) 2 + 2 ct(Z 2  --1), (2.152)

and Vc is V evaluated at the Courant timestep:

SpC- ad h2 (2.153)
4q
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The similarity of these expiessions with (2.89) through (2.91) is apparent.
Polynomial Cf(z) is the same as (2.90), and Cm(z) is precisely (2.91) if Vp =
1/2. Thus the stability regions of (2.89) for the trapezoidal rule and of (2.151)
coincide if ,.c and vc are identified. One can therefore refer to Figures 2
through 4 for the stability of C(z) with varying a, simply by replacing 1,C
by V .'

Estimating v-. To apply the conclusions of the stability analysis, it remains
to obtain a ballpark upper-bound estimate for vC. To get it, an admittedly
idealized situation is considered. Imagine that the DAA boundary is a sphere
of radius R, and that adjacent fluid-volume elements are (roughly) bricks
dimensioned L X L X L. Assume further that the fluid motions are axisym-
metric fluid-boundary modes of a sphere (Legendre functions) with circum-
ferential wave number m. The corresponding eigenroot is then given by

af 4,rR 2

m- M (2.154)M f 4 ?r P t 7 3  pR
(rn +- I )(' -, 1 +

Next, insert ad - L2 , q L'/2(1 + .), hc = L/c, and (2.154) into (2.153)
to g'et

+C - )(m-+)L (2.155)

9P

As the coup de grace, claim that the boundary mode wavelength is of the
order of the fluid-volume mesh size L, so that

2 /rR
L , (2.156)

this being clearly a worst-case scenario. Inserting (2.156) in (2.155) yields
V(' Pr /( + P). Since 0 < ic < 1,

vc < ?r 3, (2.157)

which is the estimate sought.
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§2.7 Response Calculation Details

This section meshes together the theoretical developments out-

lined in §2.3 through §2.6 with a starting procedure to put together
a practical response calculation scheme.

The Reference State. Starting a staggered solution procedure
that involves three computational fields and combines explicit and
implicit integration methods is a delicate task. If the integration
does not start right, it cannot be corrected. Furthermore, the
starting procedure should be independent of whether the structure
is linear or nonlinear, and be readily extendible to internal fluid
problems, in which the motion of the structure boundary provides
the input, excitation.

To meet, these goals, the state at t = 0 is used as reference
state. Successive integration steps determine the deviation from
the reference state, rather than the total state. For example,
the total pressure vector at fluid volume nodes is actually broken
dowiL into jour coniponeiils:

p p" + pO + (p, _ POO+ pS (2.158)

and similarly for , 1, s, etc. The pressure determined by the
central difference scheme is the reference state deviator

p1  poI + ps, (2.159)

which added to the reference pressure

P0 = pH + pI (2.160)

furnishes the total pressure p. Extending this idea to the full
coupled system leads to the following solution procedure.
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Initialization. To start up the time integration process, do the
rollow ing.

o Hydrostatic Pressure. Calculate hydrostatic pressure pH at all fluid volume
nodes, structure wet-surface nodes. and DAA control points.

o Incident Pressure. Giv(.n a spherical or plane wave pressure profile, origin,
and fluid volume node touched by the wavefront at t = 0 (the "wavefront
node"), calculate the initial incident pressure po at fluid volume nodes and
DAA control points (The wavefront node may be in contact with the struc-
ture, but the front must not intercept the structure.)

* Reference Structure Solution. Calculate the static response of the structure
to the hydrostatic pressure; let x6 be the corresponding displacement vector.
Initialize historic vectors.

o Reference DAA Solution. Calculate fluid-particle displacements at DAA
control points due to hydrostatic pressure and initial incident wave. Initialize
pressure integral vectors.

" Stepslze. Select initial time increment h.

" Initial Velocity Potential. Calculate 4'-1/2 at fluid volume nodes by
ii :.,grating the incident wave flux from t = -o to t = -h/2. (This may
I (,,nC analI ically ft, . winp'" aveforms, and numerically otherwise.)

* Initial Displacement Potential. Calculate 0'o at fluid volume nodes by
doubly integrating the incident wave flux from t = -oo to t = 0. (Same
remark as for the velocity polential calculation.)

ile Integration Process. For n = 0, 1,..., do the following.

o Structure Analysis. Solve the structure equations for the next displacement
vector. In the case of a linear structure,

E (x' - x') = hG - 62 G9 Ap,. (2.161)

* DAA Boundary Analysis (1st Stage). The incremental formulation described

in §2.6 is used. At I)AA control points, compute

Pf = Gfpd n, (2.162)

n+1 " 9(2.163)

Alf' _ (h/ 2)(f.l + 6f ), (2.164)
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H =pH (2.165)

_ H (2.166)

2t (2.167)

Tf Axf - I (AfI + Af H)_M7'Af(A ," + AVfH)

PC

+-_f Wl + _FfR- A," (2.168)
PC p

T! Axestimated . + hM'A,6. (2.169)
PC

= Xf + AX"own eAxfstimated. (2.170)

* Fluid Volume Analysis. At fluid volume nodes, compute

= (s, - s._-)/h, (2.171)

4n+1/2 -= ,,-1/2 + h(pn _pH + hc2 1n). (2.172)

+-1~, +f- 14+1/J2- it9 17'

rI= -H(*n 1 I - 'o), (2.174)

b- pA.G,(x -x"), (2.175)

n pAdGdfTf(xfnp - xf), (2.176)

(where in (2.171) s,_1 vanishes if n = 0). The pressure calculation steps
depend on nodal boundary conditions, and are best stated in terms of node
quantities. For internal fluid nodes,

sn+i - n+i/q, (2.177)

Pn+i = max (pH + p ° + c2 sn+ 1 ,0). (2.178)

For nodes in contact with the structure,

sn+ - (,r,+ + bn)/q (2.179)

Pn+i = max ( 0H p 0 + c 2 s. 1 ,O). (2.180)
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For nodes in contact with the DAA boundary,

c = Chad/(2q), (2.181)

sn+ 1 = Sn + (rn+l + bdn)/4 - S, (2.182)(I + X)

Pn+1 = pH + C2 Sn+1 •  (2.183)

For nodes at a boundary of specified pressure p (e.g. a free surface),

=+1 = 0, (2.184)

Pn+i = P. (2.185)

DAA Boundary Analysis (2nd Stage). Return to the DAA analyzer to
correct control point values:

f GfdP + . (2.186)

A* f = (h/2) (pfn+ 1 + pf (2.187)

"{+1 =n + AiV, (2.188)

A'p f = (h/2) (fnf+l + in), (2.189)

Tf AXforrected = -A f + MflAf A U, (2.190)
PC

+ + known + Aforreced (2.191)

a Advance. Increment counter n by one, time t by h, and return to the
structure subsystem. 0
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Section III

IMPLEMENTATION AND USAGE

§3.1 Implementation Overview

A number of modifications have been made to the standard USA-
STAGS code in order to accomodate the CFA. In addition, one
important assumption has been made that is implicit in the treat-
ment of Section HI and it should be clearly stated here. At this
time the computational model does not allow the DAA boun-
dary to be coincident with the structure boundary at any point.
In other words, there must always be at least one layer of fluid
volume elements between the structure and the DAA boundary,
even if the problem under investigation involves internal fluid with
non-cavitating external fluid. Relaxation of this restriction will
be the subject of a future study into alternate forms of the inter-
action equations.

The stability analyses and starting procedure described in
Section II clearly provide the groundwork for implementation
of the USA-STAGS-CFA system; however, some additional com-
ments are required as well as a reiteration of the interconnection
between USA, STAGS, and the CFA. With regard to the start-
ing procedure outlined in §2.7, it should be noted that a discon-
tinuous wavefront cannot be propagated "as is" through the fluid
volume mesh. Rather, the wavefront must be "ramped" so that
its value at the front is one-half of the jump, in line with the
Fourier convergence theorem. Only with this modification will a
discontinuous wave propagate correctly.
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Control of the transient analysis is governed by USA with STAGS
and the CFA functioning as subroutines in the staggered solution
strategy:

(:onvert, current pressures on structure boundary to forces and
obtain structural solution with STAGS. Extrapolate displacements
to t + At. If the structural behavior is linear the trapezoidal rule
is used in STAGS and the extrapolation is that of (2.69). If
the structural behavior is nonlinear the Park method is used
in STAGS and the extrapolated value is taken to be the last value.

* Determine displacements on DAA boundary due to incident and
hydrostatic pressure terms at t +At, transform current pressures
on DAA boundary to control point values and estimate incremen-
tal displacements due to total pressure at t + At from (2.169).
Sum total estimated displacements on DAA boundary.

* Using as input, the estimated displacements on the structure and
DAA boundaries, solve for the fluid-volume pressures at t + At
using the CFA.

* Correct the DAA boundary displacements using the new total
pressures.

a Save system responses and repeat cycle.
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§3.2 Usage

Although the primary emphasis of this work has been on the
development of the CFA and its interaction with USA-STAGS
during a transient response analysis, a number of changes have
been required in the processing that must preceed the time in-
tegration phase of the computations. The following is a brief
discusion of all of the steps involved.

* STAGS Preprocessing. Construct the structural model and
create grid geometry file. Although the DAA equations used
with the CFA are not, augmented and the structural mass is no
longer required for USA preprocessing the structural mass file is
still generated because it also contains the node-point/degree-of-
freedom information necessary for USA to apply pressure forces
to the structure at their proper locations.

* CFA Preprocessing. Construct a file containing the following
fluid volume information: node point coordinates, node connec-
tions to structure and DAA boundaries, node constraint tags, and,
an element node list. It is important to note that the surface
grid on the structure and the fluid volume grid in contact with
the structure should be identical although the node numbering
schemes need not be the same. In addition, the thickness of the
volume elements in contact with the structure must be carefully
sized to meet the stability criteria developed in §2.5.

* USA Preprocessing. The FLUMAS processor must access both
the structure geometry file as well as the fluid volume file. Al-
though fluid control points must, be defined for USA on the DAA
boundary and the added-mass matrix created, USA must keep
track of the fluid-volume/structure connectivity. Even though
augmentation is not carried out, the AUGMAT processor must be
executed as it still functions to produce a compact data base file
for USA to access during the transient response analysis.
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* USA-STAGS-CFA Processing. The user must specify a level
of artificial damping for the CFA and a "wavefront" node, i.e.,
the fluid volume node touched by the wavefront at t = 0, which
will be generally be located as close as possible to the structure
without actually being on it. Although the incident wave could be
propagated all the way from the DAA boundary such practice is
not recommended as computer time is simply wasted in producing
mesh dispersion that erodes the wavefront sharpness. It is also
important that the values chosen for the artificial damping and
time stepsize meet the stability criteria stated in §§2.5-2.6.

* USA Postprocessing. Fluid pressure histories can be obtained
at any fluid volume node desired as well as contour plots of the
pressure field at specified times. A consequence of this capability
is an increase in the size of the response history file for the USA-
STAGS-CFA system over that for the USA-STAGS code.
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Section IV

EXAMPLE PROBLEMS

§4.1 Overview

The USA-STAGS-CFA system has been tested by its application
to two problems whose solutions have been obtained by other
methods. The first is a one-dimensional problem studied by Bleich
and Sandier [5], which involves a fiat plate initially resting on the
surface of a half space of fluid. The second is a two-dimensional
cylindrical shell surrounded by an infinite fluid and is a variant
of a problem discussed by Newton [61. For both problems the
excitation consists of a step-exponential plane wave superimposed
upon an ambient, hydrostatic pressure field.

F,4.2 Bleiph-Sandler Plate Problem

This is effectively a one-dimensional problem whose exact solution
can be obtained by the method of characteristics. The USA-
STAGS-CFA model consisted of

(1) A single structural square plate of side dimension 1.5 in. and
unit thickness.

(2) 100 cubical fluid-volume elements of side dimension 1.5 in.

(3) A DAA boundary with a single control point at the center of
a square boundary element lying on a face of the last volume
element.

Physical properties used were equivalent to those of [5]; however,
they were converted to a computationally consistent set of units.
The mass density of the plate was 5.32986 X 10- 4 lb sec2 in- 4

while that of the fluid was 9.3455 x 10- 5 lb sec2 in- 4. The speed
of sound in the fluid was 57120 in sec - 1 .

4-1



The hydrostatic pressure in the fluid at the plate mass was
14.7 psi, increasing linearly into the fluid volume consistent with
a gravitational acceleration of 386.4 in sec- 2 . The peak pressure
of the incident wave was 103 psi and its decay time was .9958 x
10-4 see.

The time step chosen for the analysis was 1.313x 10- 5 sec
(one half of the Courant limit), which was kept constant for 1200
steps. Four sets of runs were made with and without cavitation
allowed and using artificial damping coefficient values of = 0.0,
0.25, 0.50 and 1.00. According to the stability analysis of §2.5 the
integration process should be unstable for P = 0.0 but stable for
the other three values and this was in fact verified.

Comparative results for the non-dimensional upward velocity
of the plate are shown for the stable runs in Figures 6, 7, and
8. Actual velocities in in/see can be obtained by multiplying by
57.12, while the time scale is given in decay time units. The
solid lines are the USA-STAGS-CFA results whereas the discrete
symbols are taken from the solution plots in [5]. The rapidly
decaying curves that are essentially zero by 6 decay times are for
the case when cavitation is not allowed while those that continue
out to 12 and beyond illustrate the cutoff effects of cavitation.

As can be seen the correlation is excellent. The results show
that the smoothing effects of the artificial damping have only
slight influence on the amplitude and timing of the response. The
small oscillations perceptible in Figure 6 are due to "ringing"
and dispersive effects of the fluid-volume mesh, and gradually
dissappear as d is increased.
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§4.3 Cylindrical Shell Problem

In [6] Newton presented several sets of results for an infinite
cylindrical shell problem using the special-purpose two-dimen-
sional code DPLPOT, but a direct comparison of his calcula-
tions with those of USA-STAGS-CFA could not be readily made.
This is because his structural model included a damped oscillator
whose properties were adjusted to simulate a neutrally bouyant
shell with internal equipment. The oscillator, however, couples
only to the n - I rigid-body mode of the shell. As USA-STAGS-
CFA is not based upon modal superposition and could not easily
emulate the oscillator action, Professor Newton kindly consented
to rerun one of his cases without the oscillator.

The structural model used in this study consisted of one row
of twelve STAGS 410-shell elements around half the circumference
in order to take advantage of symmetry. The shell radius was
500 cm and the axial width was chosen as 130.9 cm so that the
element aspect ratio was unity. The shell wall was of sandwich
construction with 2.5-cm-thick face sheets separated by a mass-
less core 29.1-cm-thick that was allowed to carry transverse shear
only. The physical properties of the shell material correspond
to structural steel. The values used were 7.83 gm cm - 3 for the
density, 2.1 x 1012 gm cm-'sec - 2 for Young's modulus, and 0.30
for Poisson's ratio. The behavior of the structure was constrained
to be linear at all times.

The fluid-volume model consisted of 192 brick elements ar-
ranged in 16 concentric circular cylindrical layers about the shell;
each layer is subdivided into twelve equal sectors subtending a
15° angle. The 12-element DAA boundary surrounds the fluid-
volume mesh at a radius of 2500 cm. The intermediate radii for
each sucessive layer increase in geometric proportion at a rate
of 1.105823. The physical properties of the fluid represent sea
water, with values of 1.024 gm cm - 3 for the density p and 1.5 X
105 cm sec 1 for the speed of sound c.
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The hydrostatic pressure was gm cm-sec 2 throughout
the fluid volume. The peak magnitude of the step-exponential
plane wave was 8 X 107 gm cm-'sec- 2  while the decay time
was 5 milliseconds.

The time step used in the transient response analysis was
.125 milliseconds (the Courant limit being .352 milliseconds) and
the artificial damping coefficient /3 was taken as unity. The
response calculation was carried for 160 steps out to a time of 20
milliseconds and cavitation was allowed to occur if the absolute
pressure dropped below a value of zero.

Comparative results are shown in Figures 9 through 17. The
solid lines represent the USA-STAGS-CFA calculations while the
discrete symbols represent Newton's computations (which were
provided at half-millisecond intervals). Figures 9, 10, and 11 show
radial displacement histories at the initial point of contact of the
wave on the shell, at 90° from the contact point, and at 1800 on
the back of the shell, respectively. Figures 12, 13, and 14 show
radial velocities at the same locations while Figures 15, 16, and
17 show total pressures at those locations. In these plots the
displacement and velocity responses have been rescaled so that
the length measure is meters, while the pressure values have been
multiplied by 10- 7 so that they represent megapascals. Time
is given in milliseconds.

As can be seen the correspondence is very good for the selected
displacement, and pressure histories, except for the displacement
at 900, which is more sensitive than those at 00 and 1800 to dis-
cretization details and modal convergence problems. Although
the USA-STAGS-CFA velocity responses contain oscillations that
do not appear in Newton's solution, the responses agree quite well
on the average, especially at 00 and 180'. (As explained in the
Remark on page 4-8, these oscillations are due to discretization
effects, and do not have physical significance.)

It should be mentioned that the early-time pressure peak of
Figure 15 is a real effect that is masked in the DPLPOT results
by the coarse output-sampling interval.
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It is remarkable that such good correlation has been ob-
tained even though there is a marked disparity in the discretiza-
tion details. Newton used 31 modes for the structural response,
and approximately 3000 two-dimensional fluid-volume elements
of similar size to fill a rectangular region around a half cylinder
model. Furthermore, his time step was one-fourth of that used
in the USA-STAGS-CFA computations.

Although the structural response is of greatest interest in
these studies, cavitation does occur in this problem and an idea
of its extent can be gathered from Figures 18 and 19, which are
fluid-pressure "snapshots" at 8 milliseconds. The location and
shape of the cavitating region is roughly the same in both sets of
computations; the region closes after 16 milliseconds.

The fact that structural responses agree quite well despite the
use of a much coarser fluid model in the USA-STAGS-CFA con-
putations augurs well for the applicability of this new modeling
capability to large three-dimensional underwater-shock problems.

Remark. A more refined USA-STAGS-CFA analysis of this problem was
carried out after the initial draft of this report was prepared. The spatial
grid was halved as well as the time step, resulting in a 320-step calculation
involving 768 fluid-volume elements and 24 structural elements. The velocity
oscillations of Figures 12 through 14 became hardly noticeable, which shows
them as a "coarse grid" effect. The displacement and velocity histories at
0 = 90P displayed better correlation with Newton's results, while agreement
for the other sample histories remained excellent.

4-8



0

ED

.. .... . .. ..

LL o

L (n
0L ...... .. ..... ... ......... ...... .. .... .... ........

UJ0

000
fl=r

IME

Figure 9 Radial displacement of cylindrical shell, e 00.

4-9



0

CUD

C CD

............ ......0. ..... .... ............ ......
M0

0

... . .. ... .. . .

LL-

LJ

U
Li)
a: (D

(D

0 (D

0

0 0

OO '4.OD 6.00 112.DO 1,6.00 2b. oo 24.00
TIME

Figure 10 Radial displacement of cylindrical shell, a 900.

4-10



(0

CD

0-) CD

Cr)
CD

LO1

(LJ

C

CD
.. .. ..... ..

C)

0.00 11.00 8.00 12.00 16.00 20.00 24J.00
TIME

Figure 11 Radial displacement of cylindrical shell, e 1800.

4-1l



0
0

..0. ........... ..... ... ... .... ...

0

(NJ

0 (

0

CD 0

0

CD 0

0

0

0

0

0.00 4.00 8 .00 12.00 116.00o 20.00 214.00
TIME

Figure 12 Radial velocity of cylindrical shell, 0 00

4-12



0

0
CI)

.. . . . . . . . . . . . . . . . . . . .. . .. . . . . .. . . . . . . . . .

.. .... . .. ..

Cr) 0
NLfl

00

LL- 0

LO

0

.. .. .. . . .. . .. . . ...... . . .

00

0

' 0 .00 'j.100D 8.00 12. 00 116. 00 2 10.00 2 1 4.00
TIME

Figure 13 Radial velocity of cylindrical shell, e 900.

4-13



C3)

00

cc

(\(D

CD.

)

W I .. .. .... . . .. ....

ciD

0i

ci(

.. .. ..

1'0.00 '4.00 8'.00 1'2. 00 116. 00 2 1 .00 24. 00
TIME

Figure 14 Radial velocity of cylindrical shell, e B~

4-14



0

0
. . ... .. ............. ..................... . . . . . . . . . . . . ..........

0

0

LL C

CL r)

0 0 D

D 0 G 0

C)0

00

CD 0 0'

00

-b'.Oo 4'o .00 [.'2D00 16.00 20.00 24.00
TIME

Figure 15 Total pressure on cylindrical shell, e0 *

4-15



0
Ln

00

0

0

LL. C)

a:J 0

- 0

........ .... .................... ....... .............

00

LA ..a. ....: .. ........................... ...............................

00

oi ' D12 0 16 00 00 40

oMao



LOl

00
.0. ................. .... ...... ... .................... ...........

C0

LL 0

(n

0

0

0.

-b.00 '.00 8.00 12.00 1,6.00 20.00 2A. 00
TIME

Figure 17 Total pressure on cylindrical shell, e 1 80~'.

4-17



b-b-b-I.-I. I---bbbbb-------- >:bu-g.- j--- 1
b-b- -b- -b- - bb- -b-4-bI..b- 4

b b-b-I-P- -- b- - 1--- 1- - j- - b-*bb- wcn,1.>>

I.--bI.- I.- I---> w -b--I--I-w->-0

Z XXb-XXb-Xb-XXb-EI-- I-b --- J- -ib- W W> I.- I-- I. . --

4J1

u...a.' J...JUJWWUXWWWW

----- I ~ I - ----- I - - - - -I-:

.)

4I

1w4 1- ~ 1-PI- -o

~***~* ~ ~- - - -~~d4-18?



+ P4

+ +
2* 2vC. 2v

N 2V0 0
m C', (v

m tv +0 -

2+) 2 lr v0

m N vV + +
Nv m -+ *j+r vr

c 0 2vcp
a* N 0 00 Vd
u* ) f + +2d

-f fN m i N +d *d MNN M -f i 0P ,P ,P ,P
o* mm m *) M NC 4 + + #*

Ono v i v *+4 4 N Cdf 2)' 0 0 0 W44 , Nn n r) N rd Nm v4on4

r. *l NI fi N i
mm m m NN KN -e N N11 111 ''1~

-o m a inn Nn +i +N l t4 +

~~~~, P, 44 Pi fi

r 0 .0 a ) -4W 4 NN 'a' 4 t~*20 00000000

0n oN .00 P, 4.0 co0 4
0 ~ ~ -2r in in bNN 404 4n in in 4 4* m Nl

in in~sIs . 4 f0 4 1

*' 0 in >0~

rdN r 44

a-. *v v Nv 4d U
*4 44NN N 2 N

* ~ 444 N NN N 3a%

2 4 3 44 1' N 4$*
* U~ 3 44 NN 4 22 '

- 2 4 33333 0 4

o *3 4 4 33 4 4 219



4-20



REFERENCES

[I J. A. DeRuntz and F. A. Brogan, "Underwater Shock Analysis of Non-
linear Structures, A Reference Manual for the USA-STAGS Code,"
DNA 5545F, Defense Nuclear Agency, Washington, D.C., Decembei
1980.

[2) T. L. Geers, "Residual Potential and Approximate Methods for Three-
Dimensional Fluid-Structure Interaction Problems," J. Acoust. Soc.
Am., Vol. 49, No. 5, May 1971, pp. 1505-1510.

[3] T. L. Geers, "Doubly Asymptotic Approximations for Transient Motions
of Submerged Structures," J. Acoust. Soc. Am., Vol. 64, No. 5, Nov.
1978, pp. 1500-1508.

[4] R. E. Newton, "Effects of Cavitation on Underwater Shock Loading
- Part I," NPS69-78-013, Naval Postgraduate School, Monterey, Cali-
fornia, July 1978.

[5) 11. H. Bleich and I. S. Sandier, "Interaction between Structures and
Bilinear Fluids," Int. J. Solids Structures, Vol. 6, 1970, pp. 617-639.

[61 R. E. Newton, "Effects of Cavitation on Underwater Shock Loading
- Plane Problem, Final Report," NPS-69-81-001, Naval Postgraduate
School, Monterey, California, March 1981.

[7) R. E. Newton, "Finite Element Analysis of Shock-Induced Cavitation,"
Preprint 80-110, ASCE Spring Convention, Portland, Oregon, April
1980.

[8] K. C. Park, C. A. Felippa and J. A. DeRuntz, "Stabilization of Staggered
Solution Procedures for Fluid-Structure Interaction Analysis," in Com-
putational Methods for Fluid-Structure Interaction Problems, AMD-
Vol. 26, ASME, New York, 1977, pp. 95-124.

5-1



5-2



DISTRIBUTION LIST

DEPARTMENT OF DEFENSE DEPARTMENT OF THE ARMY Continued)

Defense Advanced Rsch Proj Agency Harry Diamond Laboratories
ATTN: TIO ATTN: DELHD-NW-P

ATTN: DELHD-TA-L

Defense Intelligence Agency
ATTN: DB-4C2 US Army Concepts Analysis Agency
ATIN: D8-4C2, C. Wiehie ATTN: CSSA-ADL
ATTN: DT-IC
ATTN: DT-2 US Army Engineer Ctr & Ft Belvoir
ATTN: RTS-2A, Tech Lib ATTN: ATZA-DTE-ADM
ATTN: DB-4C3
ATTN: DB-4C, Rsch, Phys Vuln Br US Army Engineer School
ATTN: DB-4Ci ATTN: ATZA-CDC

Defense Nuclear Agcncy US Army Engr Waterways Exper Station
ATTN: SPSS ATTN: R. Whalin
ATTN: STSP ATTN: WESSE

4 cy ATTN: TITL ATTN: WESSD. J. Jackson
ATTN: J. Strange

Defense Technical information Center ATTN: J. Zelasko
12 cy ATTN: DO ATTN: F. Brown

ATTN: Library
Field olmand ATTN: WESSA, W. Flathau
Defense Nuclear Agency. Det I ATTN: WESSS, J. Ballard
Lawrence Livermore Lab

ATTN: FC-i US Army Foreign Science & Tech Ctr
ATTN: DRXST-SD

Field CosisVand
Defense Nuclear Agency US Army Material & Mechanics Rsch Ctr

ATTN: FCPR ATTN: DRXMR, J. Mescall
ATTN: FCT ATTN: Technical Library
ATTN: FCTX
ATTN: FCTT, G. Ganong US Army Material Dev & Readiness Cmd
ATTN: FCTT, W. Sunvla ATTN: DRCDE-D, L. Flynn
ATTN: FCTXE ATTN: DRXAM-TL

Field Cocmoand Test Directorate US Arny War College
ATTN: FCTC ATTN: Library

Joint Strat Tgt Planning Staff USA Military Academy
ATTN: NRI-STINFO Library ATTN: Document Library
ATTN: JLA, Threat Applications Div
ATTN: JLTW, Rautenberg USA Missile Command
ATTN: JLTW-2 ATTN: Documents Section
ATTN: DOXT ATTN: DRSMI-RH
ATTN: XPFS

DEPARTMENT OF THE NAVY
Under Secy of Def for Rsch & Engrg

ATTN: Strategic & Space Sys (OS) David Taylor Naval Ship R&D Ctr
ATTN: Code L42-3

0LPARTI.IEiIT OF THE AR4Y ATTN: Code 1700, W. Murray
ATTN: Code 1844

BMD Advanced Technology Center ATTN: Code 177, E. Palmer
ATTN: ICRDABH-X ATTN: Code 172
ATTN: ATC-T ATTN: Code 1770.1

ATTN: Code 174
Chief of Engineers ATTN: Code 2740

ATTN: DAEN-RDL ATTN: Code 1740.4
ATTN: DAEN-MPE-T ATTN: Code 1740, R. Short

ATTN: Code 173
Dep Ch of Staff for Rsch Dev & Acq ATTN: Code 11

ATTN: DAMA ATTN: Code 1740.5
ATTN: Code 1740.6

Engineer Studies Center ATTN: Code 1740.1
ATTN: DAEN-FES, LTC Hatch

Dist-1



DEPARTMENT OF THE NAVY C d DEPARTMENT OF THE NAVY

Naval Civil Engineering Laboratory Naval Weapons Evaluation FacilityATTN: Code LSI, 3. Crawford 
ATTN: G. Binns

ATTN: Code 10Naval Coastal Systems Laboratory 
ATTN: Code 210ATTN: Code 741 
ATTN: R. Hughes

Naval Explosive Ord Disposal Fac New London Laboratory
ATTN: Code 504, J. Petrousky ATTN: Code 4494, J. Patel

Naval Facilities Engineering Conmand ATTN: Code 4492, J. KalinowskiATTN: Code 048 
Newport Laboratory

ATTN: Code EM
Naval Material Command 

ATTN: Code 363, P. ParanzinoATTN: MAT 08T-22

Naval Ocean Systems Center Dfc of the Deputy Chief of Naval OpsATTN: Code 013, E. Cooper ATTN: OP 987ATTN: Code 013r 
ATTN: NOP 982, Tac Air Srf & Ewdev Div

ATTN: Code 4471 
ATTN: NOP 981

Naval Postgraduate School ATTN: NOP 654, Strat Eval & Anal Br
ATTN: Code 6NET8ATTN: Code 1424 Library 

ATTN: OP 982E, M. LenziniATTN: Code 69S , Y. Shin ATTN: OP 957EATTN: NOP 953, Tac Readiness DivNaval Research Laboratory ATTN: OP 37ATTN: OP 225ATTN: Code 8403, R. Belsham 
ATTN: OP O3EGATTN: Code 8440, G. O'Hara 
ATTN: OP 21ATTN: Code 6380 ATTN: OP 21A T T N : C o d e 8 1 0 0A T N : H O P 9 5 2 , A S W D i vATTN: Code 8100 
ATTN: OP 605D5ATTN: Code 8301 
ATTN: OP 981NIATTN: Code 8406 
ATTN: OP 223ATTN: Code 2627ATN: Code 8445

ATTN: Code 844O, . Pusey Office of Naval ResearchATTN: Code 474, N. PerroneNaval Sea Systems Command 
Strategic Systems Project OfficeATTN: SEA-O8 

ATTN: NSP-272ATTN: SEA-55XI 
ATTN: NSP-43ATTN: SEA-033 ATTN: NSP-43

ATTN: SEA-06J, R, Lane ATTN: NSP-273ATTN: SEA-09G3 
DEPARTMENT OF THE AIR FORCEATTN: SEA-9931G

ATTN: SEA-323 
Air Force Institute of TechnologyATTN: SEA-0351 

ATTN: Commander
NavaI Surface Weapons Center ATTN: Library

ATTN: Code F34 
Air Force Systems CommandATTN: Code RID 

ATTN: DLW
ATTN: Code U401, M. Kleinerman Air Force Weapons Laboratory2 cy ATTN: Code R14 

ATTN: NTES-G, S. MelzerATTN: Code F31 
ATTN: NTE, M. PlamondonATTN: Code R15 ATTN: NTES-C, R. Henny

ATTN: SULNaval Surface Weapons Center 
ATTN: NTED

ATTN: W. Wishard
ATTN: Tech Library & Info Svcs Br Assistant Chief of Staff

Naval War College Intelligence
ATTN: Code E-I1 ATTN: IN

Ballistic Missile OfficeNaval Weapons CenterATN 
DEATTN: Code 343, FKA6A2 ATTN: DEBATTN: Code 266, C. Austin Deputy Chief of StaffATTN: Code 3263, J. Bowen Research, Development, & Acq

ATTN: AFRDQINaval Weapons Support Center ATTN: R.Se
ATTN: Code 70553, D. Moore ATTN: R. Steere

Dist-2



DEPARTMENT OF THE AIR FORCE (Continued) DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Deputy Chief of Staff California Research & Technology, Inc
Logistics & Engineering ATTN: S. Schuster

ATTN: LEEE ATTN: K. Kreyenhagen
ATTN: M. Rosenblatt

Foreign Technology Division ATTN: Library
ATTN: NIIS Library
ATTN: TQTD University of Denver
ATTN: SDBG ATTN: Sec Officer for J. Wisotski
ATTN: SDBF, S. Spring

Electric Power Research Institute
Rome Air Development Center ATTN: G. Sliter

ATTN: RBES, R. Mair
ATTN: Commander Electro-Mech Systems, Inc
ATTN: TSLD ATTN: R. Shunk

Strategic Air Command General Dynamics Corp
ATTN: NRI-STINFO Library ATTN: J. Mador

ATTN: J. Miller
OTHER GOVERNMENT AGENCIES ATTN: M. Pakstys

Central Intelligence Agency Kaman AviDyne
ATTN: OSWR/NED ATTN: R. Ruetenik
ATTN: OSR/SE/F ATTN: G. Zartarian

ATTN: Library
NASA ATTN: N. Hobbs

ATTN: F. Nichols
ATTN: R. Jackson Kaman Sciences Corp

ATTN: Library
DEPARTMENT OF ENERGY CONTRACTORS ATTN: F. Shelton

University of California Kaman Sciences Corp
Lawrence Livermore National Lab ATTN: D. Sachs

ATTN: S. Erickson
Kaman Tempo

Los Alamos National Laboratory ATTN: DASIAC
ATTN: R. Whitaker
ATTN: MS 530, G. Spillman Karagozian and Case
ATTN: Reports Library ATTN: J. Karagozian
ATTN: MS 634, T. Dowler
ATTN: R. Sanford Lockheed Missiles & Space Co, Inc
ATTN: MS 670, j. Hopkins ATTN: Technical Information Center

ATTN: T. Geers
Sandia National Lab ATTN: B. Almroth

ATTN: Tech Lib, 3141 4 cy ATTN: C. Felippa
ATTN: L. Vortman 4 cy ATTN: J. DeRuntz

Sandia National Labs, Livermore Lockheed Missiles & Spaces Co, Inc
ATTN: Library & Security Classification Div ATTN: TIC-Library

DEPARTMENT OF DEFENSE CONTRACTORS M & T Company
ATTN: 0. McNaight

Applied Research Associates, Inc
ATTN: D. Piepenburg McDonnell Douglas Corp

ATTN: R. Halprin
Applied Research Associates, Inc

ATTN: B. Frank NKF Engineering Associates, Inc
ATTN: R. Belsheim

BDM Corp
ATTN: T. Neighbors Pacific-Sierra Research Corp
ATTN: A. Lavagnino ATTN: H. Brode, Chairman SAGE
ATTN: Corporate Library

Pacifica Technology
California Institute of Technology ATTN: A. Kushner

ATTN: T. Ahrens ATTN: R. Bjork
ATTN: G. Kent

Columbia University
ATTN: H. Bleich Physics Applications, Inc
ATTN: F. Dimaggio ATTN: C. Vincent

Dist-3



DEPARTMENT OF DEFENSE CONTRACTORS LContinued DEPARTMENT OF DEFENSE CONTRACTORS (Continuedl

Physics International Co Teledyne Brown Engineering
ATTN: L. Behrmann ATTN: J. Ravenscraft
ATTN: F. Sauer
ATTN: J. Thomsen Tetra Tech, Inc
ATTN: E. Moore ATTN: L. Hwang
ATTN: Technical Library

TRW Electronics & Defense Sector
S-CUBED ATTN: P. Bhuta

ATTN: T. Cherry ATTN: A. Feldman
ATTN: R. Sedgewick ATTN: N. Lipner
ATTN: D. Grine ATTN: Technical Information Center
ATTN: T. Riney ATTN: D. Jortner
ATTN: Library ATTN: B. Sussholtz
ATTN: K. Pyatt
ATTN: T. McKinley TRW Electronics & Defense Sector

ATTN: P. Dai
Science Applications, Inc ATTN: F. Pieper

ATTN: Technical Library ATTN: E. Wong
ATTN: G. Hulcher

Southwest Research Institute
ATTN: A. Wenzel Weidlinger Assoc, Consulting Engrg
ATTN: W. Baker ATTN: J. MCormick

ATTN: M. Baron

SRI International
ATTN: G. Abrahamson Weidlinger Associates
ATTN: W. Wilkinson ATTN: J. Isenberg
ATTN: A. Florence

Westinghouse Electric Corp
ATTN: MS/ED-2, 0. Bolton

Dist-4


